8 Revista Peruana de Investigación Agropecuaria
Rev. Peru. Investig. Agropecu. 3(2): e63; (Jul-Dic, 2024). e-ISSN: 2955-831X
organic matter, clay, and carbonates.
Heliyon
,
10
(9).
https://doi.org/10.1016/j.heliyon.2024.e30228
Campos, A. R., Giasson, E., Costa, J. J. F., Machado, I. R., Silva, E. B. da, & Bonfatti, B. R. (2019).
Selection of Environmental Covariates for Classifier Training Applied in Digital Soil Mapping.
Revista Brasileira de Ciência Do Solo
, 42, e0170414.
https://doi.org/10.1590/18069657RBCS20170414
Chen, J. M. (1996). Evaluation of vegetation indices and a modified simple ratio for boreal
applications.
Canadian Journal of Remote Sensing
, 22(3), 229–242.
https://doi.org/10.1080/07038992.1996.10855178
Chuvieco, E., Martín, M. P., & Palacios, A. (2002). Assessment of different spectral indices in the red-
near-infrared spectral domain for burned land discrimination.
International Journal of
Remote Sensing
, 23(23), 5103–5110. https://doi.org/10.1080/01431160210153129
Dash, J., & Curran, P. J. (2007). Evaluation of the MERIS terrestrial chlorophyll index (MTCI).
Advances in Space Research, 39(1), 100–104. https://doi.org/10.1016/j.asr.2006.02.034
Delgado-Caballero, C. E., Gómez-Guerrero, A., Valdez-Lazalde, J. R., De los Santos- Posadas, H.,
Fierros-González, A. M., & Horwath, W. R. (2009). Site index and soil properties in young
plantations of Eucalyptus grandis and E. urophylla in southeastern México.
Agrociencia
,
43(1). https://www.agrociencia-colpos.org/index.php/agrociencia/article/view/697
Dharumarajan, S., Lalitha, M., Niranjana, K., & Hegde, R. (2022). Evaluation of digital soil mapping
approach for predicting soil fertility parameters—a case study from Karnataka Plateau,
India.
Arabian Journal of Geosciences
, 15(5), 1–21. https://doi.org/10.1007/S12517-022-
09629-8
Di Raimo, L. A. D. L., Couto, E. G., de Mello, D. C., Demattê, J. A. M., Amorim, R. S. S., Torres, G. N.,
Bocuti, E. D., Veloso, G. V., Poppiel, R. R., Francelino, M. R., & Fernandes-Filho, E. I. (2022).
Characterizing and Modeling Tropical Sandy Soils through VisNIR-SWIR, MIR Spectroscopy,
and X-ray Fluorescence. Remote Sensing 2022,14(19), 4823.
https://doi.org/10.3390/RS14194823
EMBRAPA. (2009). Manual de análises químicas de solos, plantas e fertilizantes (2nd ed.). Embrapa.
www.sct.embrapa.br/liv
Frampton, W. J., Dash, J., Watmough, G., & Milton, E. J. (2013). Evaluating the capabilities of
Sentinel-2 for quantitative estimation of biophysical variables in vegetation.
ISPRS Journal of
Photogrammetry and Remote Sensing
, 82, 83–92.
https://doi.org/10.1016/j.isprsjprs.2013.04.007
Gamon, J. A., & Surfus, J. S. (1999). Assessing leaf pigment content and activity with a reflectometer.
New Phytologist, 143(1), 105–117. https://doi.org/10.1046/j.1469-8137.1999.00424.x
Gitelson, A. A., Gritz, Y., & Merzlyak, M. N. (2003). Relationships between leaf chlorophyll content
and spectral reflectance and algorithms for non-destructive chlorophyll assessment in