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The objective of the work was to predict soil fertility in the province of Alto Amazonas with the use of satellite images and machine learning techniques. The study was in the province of Alto Amazonas in Peru. Soil sampling was carried out in all the provinces, totalling 100 samples. Afterwards, soil physical (texture) and chemical  analyses were performed. Satellite images  were obtained  from  USGS,  and  vegetation  indexes  were  calculated  based  on  these  images.  Finally,  descriptive analysis and machine learning modelling using 06 algorithms (GLM, CUBIST, KKNN, SVM, Random Forest and NN) were used and selected based on their R2 and rmse.  In this work, we observed that most soils in the province have low pH, P, Mg, K and high acidity. We also managed to achieve good predictions for pH, Ca, Mg and CEC, and we observed that the most successful algorithm was Random Forest. Nevertheless, for Al, CUBIST performed better. This is one of the first works using machine learning to predict soil fertility in the Peruvian Amazon, and we hope it may serve as a base for future projects. 
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El objetivo del trabajo fue predecir la fertilidad del suelo en la provincia de Alto Amazonas con el uso de imágenes satelitales y técnicas de aprendizaje automático. El estudio se ubicó en la provincia de Alto Amazonas en Perú. Se realizaron muestreos de suelos en toda la provincia, totalizando 100 muestras. Posteriormente se realizaron análisis físicos (textura) y químicos del suelo. Las imágenes satelitales se obtuvieron del USGS y los índices de vegetación se calcularon con base en estas imágenes. Finalmente, se utilizó análisis descriptivo y modelado de aprendizaje automático utilizando 06 algoritmos (GLM, CUBIST, KKNN, SVM, Random Forest y NN) que se seleccionaron en función de su R2 y RMSE.  En este trabajo observamos que la mayoría de los suelos de la provincia tienen bajos pH, P, Mg, K y alta acidez. También se lograron obtener buenas predicciones para pH, Ca, Mg y CIC y se observó que el algoritmo más exitoso fue Random Forest. Sin embargo, para Al, Cubist tuvo mejores resultados. Este es uno de los primeros trabajos que utiliza aprendizaje automático para predecir la fertilidad del suelo en la Amazonía peruana y se espera que pueda servir como base para futuros proyectos. 
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1.  INTRODUCTION 

Soil is one of the main natural components in the production of agricultural and forestry crops. To evaluate  their  physical,  chemical  or  biological  characteristics,  random  sampling  is  carried  out  to represent  the  areas  of  interest;  however,  this  type  of  analysis  is  often  expensive  and  spatially unrepresentative  (Watt  et  al.,  2019).  However,  this  has  been  the  classic  way  of  analyzing  and diagnosing the characteristics related to soil fertility and its productive capacity in agricultural and forestry crops (Delgado-Caballero et al., 2009). 

With the improvement of technology and the use of geographic information systems, it is possible to carry out sampling considering variations in climate, topography, mineralogy and others, allowing mapping areas to be better identified (Campos et al., 2019). In general, the sampling scheme and sampling design are fundamental in digital soil mapping since they allow for obtaining the greatest possible  representativeness  of  an  area  with  the  smallest  number  of  samples  (Brus,  2019).  Thus, technological advances and the possibility of obtaining covariates such as those related to the DEM 

(digital elevation model) and climate, among others, have allowed the use of new sampling and point selection techniques such as the Latin hypercube. conditional, which also allows sampling points to be selected at the lowest cost (Yang et al., 2020), is currently one of the preferred design methods. 

On  the  other  hand,  soil  fertility  is  important  for  agricultural  and  forestry  production  and  plays  a fundamental  role  in  food  security.  Soil  fertility  is  divided  into  three  main  components:  Physical, Chemical and Biological, the interaction between the three being essential to ensure the quality and sustainability of the crops (Bünemann et al., 2018). Of all these attributes, the easiest to diagnose by traditional methods are the physical and chemical ones, the former being the least variable in time and space and commonly used in many cases as covariates for predicting chemical attributes (Di Raimo et al., 2022). 

Chemical attributes are highly variable in space, especially micronutrients or heavy elements, which increases the probability of misdiagnosis in an area with high variability, as is the case of tropical soils (Macedo Neto et al., 2020). In this way, it is possible to observe nutritional deficiencies in areas where fertilizers or amendments were applied due to the low dose suggested using traditional soil fertility diagnostic methods. 

In  this  way,  computer  systems  have  evolved  quite  a  bit,  allowing  the  use  of  powerful  statistical techniques such as machine learning, which base and adjust their predictions from models based on experience or, in this case,  from  data, one  of its  applications being  agricultural sciences and soil science (Wadoux et al., 2020). Machine learning algorithms are diverse, and to date, more than 300 

different models have been registered that can be adjusted and/or adapted to agricultural sciences to  be  used  for  the  prediction  of  relationships  between  different  climatic  conditions,  topography, management and soil fertility, with quite promising results (Dharumarajan et al., 2022; Wadoux et al., 2020). 

Some  cases  that  use  this  type  of  technique  for  predicting  soil  fertility  can  be  found  in  India (Dharumarajan et al., 2022), Europe (Lu et al., 2023), Africa (Hounkpatin et al., 2022), Brazil (Vieira et al., 2021) and even for the prediction of textural classes in Antarctic soils (Siqueira et al., 2023) in all Rev. Peru. Investig. Agropecu. 3(2): e63; (Jul-Dic, 2024). e-ISSN: 2955-831X 
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cases  with  high  prediction  indices,  which  allowed  having  an  idea  of  the  spatial  variability  of  soil characteristics and how these are related to the landscape and environment. In this way, the present research aimed  to predict soil fertility in the province of Alto Amazonas with the use of satellite images and machine learning techniques. 

2.  MATERIALS AND METHODS 

2.1. Localization 

The research wil  be carried out in the Province of Alto Amazonas, which has an Am type climate (Köppen, 1931). This region of the country has average annual maximums and minimums of 31.7°C 

and 21.8°C, respectively. The average annual accumulated precipitation is 2086.2 mm. 

2.2. Imaging processing 

Images wil  be obtained freely from  the United States Geological Service (USGS), considering the date  of  collection  of  soil  samples.  Images  from  satellite  Sentinel-2  wil   be  selected,  taking  into consideration the cartographic base available from the company that was visualized in Google Earth. 

Sentinel-2 has a regular multispectral camera with 13 bands in the spectrum's visible, near-infrared and short-wave infrared parts with main applications such as agriculture, land ecosystems, forest management, and others. To improve values obtained from the satel ite, calibrations and conversion wil  be performed to suppress the effect of atmospheric gases. 

2.3. Vegetation Indexes 

Proposed Vegetation Indexes (VI) are presented in Table 1 and are based on previous work executed for oil palm (Oliveira Teixeira, 2022). These VI wil  be calculated to predict their relationship with Alto Amazonas – Loreto soil characteristics. 

Table 1.  

Proposed VI for predicting soil fertility in Alto Amazonas - Loreto Index 

Equation 

Atmospherically Resistant Vegetation 

𝑁𝐼𝑅 − (2 ∗ 𝑅 − 𝐵) 

Index (ARVI) (Kaufman & Tanré, 1992) 

𝑁𝐼𝑅 + (2 ∗ 𝑅 − 𝐵)

Difference Vegetation Index (DVI) 

(Tucker, 1980) 

𝑁𝐼𝑅 − 𝑅 

Green Chlorophyll Index (GCI) (Gitelson 

𝑁𝐼𝑅

et al., 2003) 

− 1 

𝐺

Green Difference Vegetation Index 

(GDVI) (Sripada et al., 2006) 

𝑁𝐼𝑅 − 𝐺 

Leaf Area Index (LAI) (Boegh et al., 2002) 

2.5 ∗ (𝑁𝐼𝑅 − 𝑅)

3.618 ∗

− 0.118 

𝑁𝐼𝑅 + 6 ∗ 𝑅 − 7.5 ∗ 𝐵 + 1

Normalized Difference Vegetation Index 

𝑁𝐼𝑅 − 𝑅 

(NDVI) (Rouse et al., 1974) 

𝑁𝐼𝑅 + 𝑅

Optimized Soil Adjusted Vegetation 

𝑁𝐼𝑅 − 𝑅



Index (OSAVI) (Rondeaux et al., 1996) 

𝑁𝐼𝑅 + 𝑅 + 0.5

Soil Adjusted Vegetation Index (SAVI) 

𝑁𝐼𝑅 − 𝑅



(Huete, 1988) 

1.5 ∗ 𝑁𝐼𝑅 + 𝑅 + 0.5
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Specific Leaf Area Vegetation Index 

𝑁𝐼𝑅



(SLAVI) (Lymburner et al., 2000) 

𝑅 + 𝑆𝑊𝐼𝑅

Simple Ratio or Ration Vegetation Index 

𝑁𝐼𝑅 

(SR) (Jordan, 1969) 

𝑅

Triangular Vegetation Index (TVI) (Broge 

& Leblanc, 2001)  

0.5 ∗ (120 ∗ (𝑁𝐼𝑅 − 𝐺) − 200 ∗ (𝑅 − 𝐺)) 

Visble Atmospherically Resistant Index 

𝐺 − 𝑅  

(VARI) (Gitelson et al., 2003) 

𝐺 + 𝑅 − 𝐵

Vegetativen (VEG)  

𝐺



𝑅0.667 ∗ 𝐵0.333

 

2.4. Soil sampling and analysis 

Soil sampling was performed at 0-20 cm depth in different regions of Alto Amazonas province to obtain the maximum information from each site, totalling 100 soil samples. 

The physical and chemical properties of the soil, such as pH, E.C., organic matter, textural fractions (sand, clay, and lime), exchangeable bases (Ca, Mg, Na, and K), exchangeable acidity, available P, and CEC were determined before and after liming the soil. The chemical methods used for assessing soil characteristics are reported in previous publications (Arévalo-Hernández et al., 2022). Soil texture analysis was performed with the Bouyoucos method, using 1 M L−1 of NaOH as a dispersant. Soil pH (1:2.5 H2O) was measured with a potentiometer, electrical conductivity (EC) with a conductivity meter, and organic matter (OM) concentration with the Walkey and Black method by titration. CEC 

and base cations (Ca2+, Mg2+, Na+, K+) were determined using extraction with 1 M NH4OAc and, after, determined in flame atomic absorption spectrophotometer—FAAS. Yuan's method was used to determine exchangeable acidity (Al3+, H+). Available P was extracted with the Olsen method (0.5 

M NaHCO3 pH 8.5) and determined in a UV-VIS spectrophotometer. The selected microelements (Cu, Fe, Mn, Zn) were extracted by DTPA and then analyzed by AAS. 

2.5. Modelling and statistical analyses  

For model ing, data wil  be divided into training and testing data. For the training phase, 75% of data from farms wil  be used, while the remaining 25% wil  be for prediction assessment (testing data). 

Descriptive statistics (minimum, quartile-1, mean, median, quartile-3, standard deviation, maximum, interquartile  range  and  coefficient  of  variation)  wil   be  performed  for  all  soil  characteristics  and vegetation indexes (VI). The data and descriptive statistics wil  be used for model ing procedures; however, to avoid high correlated variables (r>0.90), Spearman correlation (5% confidence) wil  be performed, and only low correlated variables wil  be stored. 

Afterwards, data wil  be submitted to six models as fol ows: Cubist (C), General Linear Model (GLM), Random Forest (RF), Weighted K-Nearest Neighbor Classifier (KKNN), Support Vector Machine (SVM) and Neural Network (NN). The root mean square error (RMSE) and the coefficient of determination (R2) wil  be calculated for training and validation to compare and select the best algorithm with the higher R2 and lower RMSE. From the results of the models, an important analysis wil  be performed to  select  the  most  influential  variables  to  produce  the  final  prediction  model.  All  model ing procedures and statistical analyses wil  be performed in R, version 4.1.2 (R Core Team, 2021). 
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3. RESULTS AND DISCUSSION 

3.1. Soil physical and chemical characteristics 

Table 2 presents the descriptive statistics of soil physical and chemical characteristics. In the case of physical characteristics, texture indicated that mean values of sand were higher in comparison to silt or  clay,  indicating  a  predominance  of  clay  loam  to  sandy  loam  soils,  representing  74.7  %  of  the sampled soils. 

Table 2. 

Soil chemical and physical attributes mean, median, Interquartile Range and Range in Alto Amazonas province 

Soil variables 

Mean (SD) 

Median (IQR) 

Range 

pH 

4.8 (0.9) 

4.6 (1.0) 

3.2 - 7.9 

CE dS/cm 

0.2 (0.4) 

0.1 (0.1) 

0.0 - 2.0 

CaCO3 % 

0.0 (0.3) 

0.0 (0.0) 

0.0 - 2.6 

Organic Matter % 

2.7 (4.3) 

1.8 (2.0) 

0.0 - 31.9 

P mg/kg 

5.8 (7.6) 

3.7 (4.0) 

0.0 - 54.9 

Sand % 

48.3 (20.4) 

47.7 (31.6) 

7.0 - 88.0 

Silt % 

25.9 (11.2) 

25.5 (16.5) 

5.3 - 52.0 

Clay % 

25.9 (13.6) 

25.4 (17.2) 

2.0 - 57.0 

CEC cmol+/kg 

10.3 (9.5) 

7.5 (9.3) 

1.1 - 42.8 

Ca cmol+/kg 

5.2 (8.0) 

1.0 (5.8) 

0.0 - 38.0 

Mg cmol+/kg 

0.7 (0.9) 

0.3 (1.0) 

0.0 - 3.5 

K cmol+/kg 

0.1 (0.1) 

0.1 (0.1) 

0.0 - 0.5 

Na cmol+/kg 

0.1 (0.1) 

0.1 (0.0) 

0.1 - 0.4 

Al cmol+/kg 

2.8 (2.9) 

2.0 (3.4) 

0.0 - 15.2 



For chemical characteristics, the mean and median value of pH in the soil (4.8) was acidic. However, some  places  showed  high  pH  values  (7.9),  indicating  that  a  great  region  area  may  require  lime amendments to achieve better yields. In the case of CE (dS/cm), all the values remain low, with no saline soils observed in this region. In the case of Carbonates, low to zero values were observed, being the mean and median near zero. For organic matter (%), mean values were observed in the medium range and the mean slightly below the critical limit (2%); however, due to wetlands, higher values were also observed in the magnitude of 31.9%. In the case of nutrients, P mean and median values were low (<7 mg kg-1), indicating the high need for P fertilizers for crop production. 

For exchangeable bases (Ca, Mg, K and Na), Ca had mean and median with very different values indicating a non-normal distribution of data, while mean values were in the range considered as medium (3-6 cmol+/kg). For Mg, mean values were low (<1.0 cmol+/kg), indicating the need  to apply  high  Mg  amendments.  Finally,  for  K  and  Na,  mean  values  were  very  low  (<0.1  cmol+/kg), indicating the need for high K fertilizers. 

Finally, in the case of exchangeable acidity (Al), mean values were high (>2.5 cmol+/kg), indicating the need for the use of acidic tolerant species or lime amendments to reduce Al toxicity in crop production in this province. 
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3.2. Prediction models 

The results of the different machine learning models applied to the study for the prediction of soil fertility in Alto Amazonas province in the Loreto region are presented in Table 3. 

Table 3. 

Prediction models (GLM, CUBIST, KKNN, SVM, RF and NN) R2, RMSE and MAE for main soil physical and chemical characteristics in Alto Amazonas province 

GLM* 

CUBIST 

KKNN 

SVM  

RF 

NN 

Soil variables  R2  rmse  MAE  R2  rmse  MAE  R2  rmse  MAE  R2  rmse  MAE  R2  rmse  MAE  R2  rmse  MAE 

pH 

0.21  0.99 

0.66 

0.60  0.73 

0.49 

0.18 

0.96 

0.64 

0.01  1.11 

0.74 

0.71   0.73 

0.49 

0.01  3.82 

2.55 

Organic Matter  0.12   2.54 

1.69 

0.23  1.71 

1.14 

<0.01   2.08 

1.39 

0.12  3.06 

2.04 

0.19   2.83 

1.89 

0.20  1.77 

1.18 

P mg/kg 

0.05  9.51 

6.34 

0.01  6.20 

4.13 

0.02 

4.56 

3.04 

0.07  5.67 

3.78 

0.03   4.49 

2.99 

0.09  4.91 

3.27 

Ca cmol+/kg 

0.46  6.12 

4.08 

0.06  9.31 

6.21 

0.52 

4.91 

3.27 

0.42  6.61 

4.41 

0.75   3.53 

2.35 

0.28  8.20 

5.47 

Mg cmol+/kg 

0.35  0.62 

0.41 

0.48   0.52 

0.35 

0.42  

0.56 

0.37 

0.37  0.61 

0.41 

0.57  0.48 

0.32 

0.47  0.56 

0.37 

K cmol+/kg 

0.27  35.76  23.84   0.15  33.37  22.25   0.07 

32.76  21.84   0.21  38.71  25.81  0.29   27.94  18.63  0.10   60.10  40.07 

Al cmol+/kg 

0.47  3.36 

2.24 

0.66  2.26 

1.51 

0.09 

3.45 

2.30 

0.44  3.11 

2.07 

0.34  3.02 

2.01 

0.05  4.20 

2.80 

CEC cmol+/kg   0.91  1.88 

1.25 

0.65  4.29 

2.86 

0.78 

3.15 

2.10 

0.89  2.19 

1.46 

0.92  2.32 

1.55 

0.01   10.49  6.99 

* Cubist (C), General Linear Model (GLM), Random Forest (RF), Weighted K-Nearest Neighbor Classifier (KKNN), Support Vector Machine (SVM) and Neural Network (NN) 

It was possible to observe that, in general, to predict soil variables, the Random Forest algorithm was satisfactory  compared  to  other  models,  obtaining  the  higher  R2  and  lower  RMSE  in  the  Alto Amazonas province. However, in the case of organic matter and Aluminum, the CUBIST algorithm was slightly superior. 

Even  though  the  use  of  these  algorithms  in  the  prediction  of  soil  variables  is  not  new,  some algorithms have performed better than others, such as random forest, since it has great capacity in the use of nonlinear data and is robust against possible errors (Breinman, 2001). Also, Smith et al. 

(2020) have obtained better performance with random forest in soil texture prediction in agricultural soils.  In  the  case  of  Organic  Matter,  Mosaid  et  al.  (2024)  showed  that  the  use  of  random  forest performed better, as shown in the present study. 

Even though the perspectives of using machine learning have been discussed elsewhere by Sujatha et al. (2023), it remains an interesting tool to have results in areas where the logistics and costs are often expensive, improving the information and decision-making. 

CONCLUSIONS 

Alto Amazonas province has high climatic and geologic differences, generating different  types of soils and formations; also, access to many areas is limited. The use of machine learning algorithms to predict poses as an alternative to improve information on soil fertility. In this work, we observed that most soils in the province have low pH, P, Mg, K and high acidity. We also managed to achieve good predictions for pH, Ca, Mg and CEC, and we observed that the most successful algorithm was Random Forest. Nevertheless, for Al, Cubist performed better. This is one of the first works using machine learning to predict soil fertility in the Peruvian Amazon, and we hope it may serve as a base for future projects. 
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