Business intelligence to improve strategic decisions in a Peruvian municipality

Authors

DOI:

https://doi.org/10.56926/unaaaciencia.v3i1.59

Keywords:

data, organizational management, information, Hefesto methodology, decision making

Abstract

The objective of this research was to determine the influence of business intelligence on the strategic decisions of a Peruvian district municipality. It was an applied, descriptive-explanatory research, with a quasi-experimental design. The sample consisted of 15 users. The techniques applied were the survey and observation, using the questionnaire and the observation form as instruments. The results showed that business intelligence had a significant influence on report generation time, information analysis time and the level of satisfaction of the municipality's users, finding in all cases a significance level (p-value) equal to 0.000, less than the permitted margin of error (0.05). It was concluded that the business intelligence implemented through the Hephaestus methodology significantly influenced the municipality's strategic decisions, with a mean difference of 17 points between the pretest and posttest strategic decisions and a significance level of 0.000, less than 0.05.

Downloads

Download data is not yet available.

References

Ammons, D. N., & Roenigk, D. J. (2021). Tools for Decision Making. Routledge. https://doi.org/10.4324/9781003129431

Awan, U., Shamim, S., Khan, Z., Zia, N. U., Shariq, S. M., & Khan, M. N. (2021). Big data analytics capability and decision-making: The role of data-driven insight on circular economy performance. Technological Forecasting and Social Change, 168, 120766. https://doi.org/10.1016/j.techfore.2021.120766

Capuena Arirama, L., & Del Aguila Amaringo, M. (2019). Influencia de inteligencia de negocios en la toma de decisiones de servicios del terminal portuario Iquitos Enapu – 2018 [Universidad Científica del Perú]. http://repositorio.ucp.edu.pe/handle/UCP/724

Caycho Dominguez, M., Terrones Castrejon, G., Soria, J. J., Vega Manrique, M., & Segura Peña, L. (2024). Data Mart in Business Intelligence with Hefesto for Sales Area in a Dental Clinic. En Data Analytics in System Engineering (pp. 9-24). Springer. https://doi.org/10.1007/978-3-031-54820-8_2

Doran, N. M., Puiu, S., Bădîrcea, R. M., Pirtea, M. G., Doran, M. D., Ciobanu, G., & Mihit, L. D. (2023). E-Government Development—A Key Factor in Government Administration Effectiveness in the European Union. Electronics, 12(3), 641. https://doi.org/10.3390/electronics12030641

Fedchenko, E., Savina, N., Timkin, T., Lipatova, I., & Vinogradova, A. (2023). Developing a controlling system as a factor in improving the quality of public administration. Revista Gestão & Tecnologia, 23, 136-153. https://doi.org/10.20397/2177-6652/2023.v23i0.2601

Gómez, A. (2013). Inteligencia de negocios, una ventaja competitiva para las organizaciones. Revista Ciencia y Tecnología, 8(22), 85-96. https://revistas.unitru.edu.pe/index.php/PGM/article/view/193

Gupta, S., Drave, V. A., Dwivedi, Y. K., Baabdullah, A. M., & Ismagilova, E. (2020). Achieving superior organizational performance via big data predictive analytics: A dynamic capability view. Industrial Marketing Management, 90, 581-592. https://doi.org/10.1016/j.indmarman.2019.11.009

Hernández Sampieri, R., Fernández Collado, C., & Baptista Lucio, P. (2014). Metodología de la investigación (6ta ed.). McGraw-Hill Education.

Inquilla Quispe, R. C. (2019). Metodología de inteligencia de negocios en el proceso de toma de decisiónes del rendimiento académico de la Universidad Naciónal de Cañete [Universidad Nacional Federico Villareal]. https://repositorio.unfv.edu.pe/handle/20.500.13084/3528

Macarlupú Flores, C. E. (2019). Implementación de una solución de inteligencia de negocios para la toma de decisiones en el Ceplan 2017 [Universidad San Ignacio de Loyola]. https://repositorio.usil.edu.pe/entities/publication/1dc6a75b-6089-4a0d-9666-7322794db7e0

Maria Hernandez Cruz, L., Javier Barrera Lao, F., Concepcion Mex Alvarez, D., Castillo Tellez, M., Carlos Canto Canul, R., Israel Solis May, J., & Deyanira Flores Guerrero, M. (2022). Use of the Hefesto v2.0 methodology to implement a Data warehouse: Case applied COVID-19. 2022 17th Iberian Conference on Information Systems and Technologies (CISTI), 1-6. https://doi.org/10.23919/CISTI54924.2022.9820132

Ministerio de Economía y Finanzas [MEF]. (2017). Programa de incentivos 2017 a la mejora de la gestión municipal. https://www.mef.gob.pe/contenidos/presu_publ/capacita/brochurePI_2017.pdf

Niu, Y., Ying, L., Yang, J., Bao, M., & Sivaparthipan, C. B. (2021). Organizational business intelligence and decision making using big data analytics. Information Processing & Management, 58(6), 102725. https://doi.org/10.1016/j.ipm.2021.102725

Nuñez Ruiz, M. L. (2019). Inteligencia de negocios y su relación en la toma de decisiones de la Universidad San Martín de Porres [Universidad de San Martín de Porres]. https://repositorio.usmp.edu.pe/handle/20.500.12727/5774

Shao, C., Yang, Y., Juneja, S., & GSeetharam, T. (2022). IoT data visualization for business intelligence in corporate finance. Information Processing & Management, 59(1), 102736. https://doi.org/10.1016/j.ipm.2021.102736

Solana-González, P., Vanti, A. A., García Lorenzo, M. M., & Bello Pérez, R. E. (2021). Data Mining to Assess Organizational Transparency across Technology Processes: An Approach from IT Governance and Knowledge Management. Sustainability, 13(18), 10130. https://doi.org/10.3390/su131810130

Srebalová, M., & Peráček, T. (2022). Effective Public Administration as a Tool for Building Smart Cities: The Experience of the Slovak Republic. Laws, 11(5), 67. https://doi.org/10.3390/laws11050067

Tavera Romero, C. A., Ortiz, J. H., Khalaf, O. I., & Ríos Prado, A. (2021). Business Intelligence: Business Evolution after Industry 4.0. Sustainability, 13(18), 10026. https://doi.org/10.3390/su131810026

Yeke, S. (2023). Digital intelligence as a partner of emotional intelligence in business administration. Asia Pacific Management Review, 28(4), 390-400. https://doi.org/10.1016/j.apmrv.2023.01.001

UNAAACIENCIA

Published

2024-04-20

How to Cite

Cotrina-Altamirano, N., Cárdenas-García, Ángel, & Torres-Delgado, W. (2024). Business intelligence to improve strategic decisions in a Peruvian municipality. UNAAACIENCIA-PERÚ, 3(1), e59. https://doi.org/10.56926/unaaaciencia.v3i1.59

Issue

Section

Original articles

Most read articles by the same author(s)